Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

William T. A. Harrison, ${ }^{\text {a* }}$ H. S.

 Yathirajan, ${ }^{\text {b }}$ B. K. Sarojini, ${ }^{\text {c }}$ B. Narayana ${ }^{d}$ and K. K. Vijaya Raj ${ }^{\text {d }}$${ }^{\text {a }}$ Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland, ${ }^{\mathbf{b}}$ Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore-570 006, India, ${ }^{\text {º Department of }}$ Chemistry, P. A. College of Engineering, Nadupadavu, Mangalore-574 153, India, and ${ }^{\mathrm{d}}$ Department of Chemistry, Mangalore University, Mangalagangotri-574 199, India

Correspondence e-mail:
w.harrison@abdn.ac.uk

Key indicators

Single-crystal X-ray study
$T=120 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.024$
$w R$ factor $=0.060$
Data-to-parameter ratio $=17.8$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
2-Bromo-1-chlorophenyl-3-(4-methoxy-phenyl)prop-2-en-1-one

The geometrical parameters for the title compound, $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{BrClO}_{2}$, are normal. The observed bond lengths and angles imply that there is little electronic conjugation between the two benzene ring systems. An intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ interaction may help to establish the molecular conformation. The crystal packing results in a centrosymmetric structure.

Comment

Many chalcone $\left(\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}\right)$ derivatives crystallize as noncentrosymmetric structures and display significant non-linear optical (NLO) properties (Uchida et al., 1998). The title compound, (I), (Fig. 1), was prepared as part of our ongoing studies in this area (Harrison et al., 2005). However, (I) crystallizes in a centrosymmetric space group, thus it has a zero NLO response (Watson et al., 1993).

(I)

The geometrical parameters for (I) are normal (Allen et al., 1987) and consistent with those of other chalcone derivatives (Moorthi et al., 2005; Patil et al., 2006). The molecule of (I) is distinctly twisted about the $\mathrm{C} 4-\mathrm{C} 7$ and $\mathrm{C} 7-\mathrm{C} 8$ bonds (Table 1). This twisting, and the $\mathrm{C} 4-\mathrm{C} 7$ and $\mathrm{C} 7-\mathrm{C} 8$ bond lengths of greater than $1.48 \AA$, imply that there is limited electronic conjugation between the two aromatic ring systems. The dihedral angle between the benzene ring mean planes ($\mathrm{C} 1-\mathrm{C} 6$ and $\mathrm{C} 10-\mathrm{C} 15$) is $53.35(6)^{\circ} . \mathrm{C} 7$ and O 2 deviate from the former mean plane by 0.176 (3) and 0.895 (3) \AA, respectively. By contrast, the terminal methyl atom C 16 is almost coplanar with the C10-C15 ring [deviation $=0.045(4) \AA$].

A PLATON (Spek, 2003) analysis of (I) indicated a possible intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ interaction (Table 2) that might help to maintain near coplanarity between the $\mathrm{C} 8 / \mathrm{C} 9 /$ Br 1 fragment and the C 10 -benzene ring. The predicted (Bondi, 1964) van der Waals contact distance for H and Br is $3.05 \AA$. There are no $\pi \cdots \pi$ stacking interactions in the crystal structure of (I).

Experimental

2,3-Dibromo-1-chlorophenyl-3-(4-methoxyphenyl)-2-propan-1-one $(4.32 \mathrm{~g}, 0.01 \mathrm{~mol})$ was mixed with triethylamine $(5 \mathrm{ml}, 0.05 \mathrm{~mol})$ in toluene (100 ml). The reaction was stirred for 24 hrs . and the precipitated triethylamine hydrobromide was removed by filtration.

The solvent was removed under reduced pressure and the resulting solid mass obtained on cooling was collected by filtration. The crude product was recrystallized from ethanol to yield blocks of (I) in 60% yield. M.p.: 403 K . Analysis for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{BrClO}_{2}$: calc. C 54.65 , H 3.44%, found: C 54.53 , H 3.64%.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{16} \mathrm{H}_{12} \mathrm{BrClO}_{2} \\
& M_{r}=351.62 \\
& \text { Monoclinic, } P 2_{1} / c \\
& a=13.9793(3) \AA \\
& b=8.8780(1) \AA \\
& c=11.4870(3) \AA \\
& \beta=96.7094(10)^{\circ} \\
& V=1415.87(5) \AA^{3} \\
& Z=4
\end{aligned}
$$

$$
D_{x}=1.650 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
Cell parameters from 3426 reflections
$\theta=2.9-27.5^{\circ}$
$\mu=3.09 \mathrm{~mm}^{-1}$
$T=120$ (2) K
Block, colourless
$0.55 \times 0.37 \times 0.18 \mathrm{~mm}$

Data collection

Nonius KappaCCD diffractometer ω and φ scans
Absorption correction: multi-scan
$S A D A B S$ (Bruker, 2003)
$T_{\min }=0.266, T_{\max }=0.573$
19150 measured reflections 3249 independent reflections

Refinement

```
Refinement on \(F^{2}\)
\(R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.024\)
\(w R\left(F^{2}\right)=0.060\)
\(S=1.04\)
3249 reflections
183 parameters
H-atom parameters constrained
```

2906 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.039$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-18 \rightarrow 18$
$k=-11 \rightarrow 11$
$l=-14 \rightarrow 14$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0257 P)^{2}\right. \\
& +1.1891 P \text {] } \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\text {max }}=0.36 \text { e } \AA^{-3} \\
& \Delta \rho_{\min }=-0.58 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL } \\
& \text { Extinction coefficient: } 0.0135 \text { (6) }
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\AA^{\circ}{ }^{\circ}\right.$).

$\mathrm{C} 4-\mathrm{C} 7$	$1.494(2)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.346(2)$
$\mathrm{C} 7-\mathrm{C} 8$	$1.488(2)$	$\mathrm{C} 9-\mathrm{C} 10$	$1.460(2)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 7-\mathrm{O} 2$	$33.7(2)$	$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 15$	$-2.9(3)$
$\mathrm{O} 2-\mathrm{C} 7-\mathrm{C} 8-\mathrm{Br} 1$	$19.6(2)$		

Table 2
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 15-\mathrm{H} 15 \cdots \mathrm{Br} 1$	0.95	2.62	$3.3339(18)$	132

H atoms were positioned geometrically $(\mathrm{C}-\mathrm{H}=0.95-0.98 \AA)$ and refined as riding with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ (carrier) or $1.5 U_{\text {eq }}$ (methyl carrier). The methyl group was rotated to fit the electron density.

Data collection: COLLECT (Nonius, 1998); cell refinement: $H K L$ SCALEPACK (Otwinowski \& Minor 1997); data reduction: HKL

Figure 1
View of (I), showing 50% displacement ellipsoids (arbitrary spheres for the H atoms). The possible $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ interaction is indicated by a dashed line.

SCALEPACK and DENZO (Otwinowski \& Minor 1997), SCALEPACK and SORTAV (Blessing 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

We thank the EPSRC National Crystallography Service (University of Southampton) for the data collection. One of the authors (BKS) thanks AICTE, Government of India, New Delhi for financial assistance under the 'Career Award for Young Teachers' Scheme.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L. Orpen, A. G. \& Taylor, R. (1987).J. Chem. Soc. Perkin Trans. 2. p.p. S1-19.

Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Bondi, A. (1964). J. Phys. Chem. 68, 441-000.
Bruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Harrison, W. T. A., Yathirajan, H. K., Sarojini, B. K., Narayana, B. \& Anilkumar, H. G. (2005). Acta Cryst. C61, o728-o730.
Moorthi, S. S., Chinnakali, K., Nanjundan, S., Radhika, R., Fun, H.-K. \& Yu, X.-L. (2005). Acta Cryst. E61, o480-o482.

Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter, Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Patil, P. S., Ng, S.-L., Razak, I. A., Fun, H.-K. \& Dharmaprakask, S. M. (2006). Acta Cryst. E62, o1465-o1465.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Uchida, T., Kozawa, K., Sakai, T., Aoki, M., Yoguchi, H., Abduryim, A. \& Watanabe, Y. (1998). Mol. Cryst. Liq. Cryst. 315, 135-140.
Watson, G. J. R., Turner, A. B. \& Allen, S. (1993). Organic Materials for Nonlinear Optics III, edited by G. J. Ashwell \& D. Bloor. RSC Special Publication No. 137, pp 112-117.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

